Kalman and unscented kalman filter feature enhancement for noise robust ASR
نویسندگان
چکیده
Model-based feature enhancement is an ASR front-end technique to increase the robustness of the recogniser in noisy environments. However, its MMSE-estimates of the clean speech feature vectors are based only on the static components at the current frame. In this paper, we show how the Kalman filter framework can be seen as a natural extension that incorporates both the current and the previous frames in the enhancement process. Because multiple Kalman filters are run in parallel, the global clean speech estimate is given by a weighted linear combination of the individual MMSE-estimates. Also, the unscented transformation is considered to avoid the linearisation of the cepstral domain observation equation. We present experimental results on the Aurora2 database for both the multi-modal Kalman and the unscented Kalman filter feature enhancement.
منابع مشابه
Doppler and bearing tracking using fuzzy adaptive unscented Kalman filter
The topic of Doppler and Bearing Tracking (DBT) problem is to achieve a target trajectory using the Doppler and Bearing measurements. The difficulty of DBT problem comes from the nonlinearity terms exposed in the measurement equations. Several techniques were studied to deal with this topic, such as the unscented Kalman filter. Nevertheless, the performance of the filter depends directly on the...
متن کاملRotated Unscented Kalman Filter for Two State Nonlinear Systems
In the several past years, Extended Kalman Filter (EKF) and Unscented Kalman Filter (UKF) havebecame basic algorithm for state-variables and parameters estimation of discrete nonlinear systems.The UKF has consistently outperformed for estimation. Sometimes least estimation error doesn't yieldwith UKF for the most nonlinear systems. In this paper, we use a new approach for a two variablestate no...
متن کاملIMPLEMENTATION OF EXTENDED KALMAN FILTER TO REDUCE NON CYCLO-STATIONARY NOISE IN AERIAL GAMMA RAY SURVEY
Gamma-ray detection has an important role in the enhancement the nuclear safety and provides a proper environment for applications of nuclear radiation. To reduce the risk of exposure, aerial gamma survey is commonly used as an advantage of the distance between the detection system and the radiation sources. One of the most important issues in aerial gamma survey is the detection noise. Various...
متن کاملEstimation of LOS Rates for Target Tracking Problems using EKF and UKF Algorithms- a Comparative Study
One of the most important problem in target tracking is Line Of Sight (LOS) rate estimation for using from PN (proportional navigation) guidance law. This paper deals on estimation of position and LOS rates of target with respect to the pursuer from available noisy RF seeker and tracker measurements. Due to many important for exact estimation on tracking problems must target position and Line O...
متن کاملRobust unscented Kalman filter with adaptation of process and measurement noise covariances
a r t i c l e i n f o a b s t r a c t Keywords: Adaptation Unscented Kalman filter Masreliez–Martin filter Relative navigation Robot arm tracking Unscented Kalman filter (UKF) has been extensively used for state estimation of nonlinear stochastic systems, which suffers from performance degradation and even divergence when the noise distribution used in the UKF and the truth in a real system are...
متن کامل